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Abstract: Given a plant and a specification, both represented as formal languages, the controllability
prefix is defined as the set of event sequences from which on a supervisor can control the plant
according to the specification. The controllability prefix was first introduced in the context of ω-
languages, where it plays a crucial role in the solution of the supervisory controller synthesis problem.
In the present paper, we address the controllability prefix for ∗-languages. In our discussion, we (a)
present a novel characterisation of the supremal controllable and relatively closed sublanguage in terms
of the controllability prefix; we (b) derive a fixpoint characterisation of winning states from a game
theoretic interpretation of a specific state feedback synthesis problem; and (c) we establish a one-to-one
correspondence between winning states and the controllability prefix. In summary, we obtain an efficient
algorithm for the computation of the controllability prefix.
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controllability prefix.

INTRODUCTION

A discrete-event system in closed-loop configuration, as origi-
nally introduced by Ramadge and Wonham (1987, 1989), can
be interpreted as a two player game. From this perspective, each
turn consists of two moves in which the supervisor (player 0)
applies a control pattern to specify the set of enabled events
and the plant (player 1) subsequently generates one such event.
The objective of the supervisor is to enforce a safety speci-
fication while avoiding livelocks and deadlocks. A player-0-
winning configuration is a sequence of past events such that
the supervisor can henceforth organise its moves to meet its
objective regardless the subsequent moves of the plant. Fol-
lowing Thistle and Wonham (1994b), we refer to the set of all
player-0-winning configurations as the controllability prefix of
a specification w.r.t. a given plant.

Taking a game theoretic perspective is common in the field
of reactive synthesis, which specifically addresses not only
safety specifications but also general liveness specifications
representable as ω-languages, i.e., languages of infinite-length
words; see Finkbeiner (2016). Regarding supervisory control,
ω-languages are addressed by Thistle and Wonham (1994b). In
this setting, a supremal achievable closed-loop behaviour does
in general not exist, however, a tight upper bound can be stated
in terms of the controllability prefix. Thus, the controllability
prefix plays a key role in the solution of the synthesis problem
for supervisory control of ω-languages. Notably, this branch
of supervisory control is closely related to reactive synthesis;
see (Ehlers et al., 2017; Schmuck et al., 2020).

In this paper, we address supervisory control in the original
setting introduced by Ramadge and Wonham (1987, 1989),
where the plant and the specification are representable as ∗-
languages, i.e., languages of finite-length words. Here, the
supremal achievable closed-loop behaviour does exist and, for
regular problem parameters, it can be computed by well estab-
lished procedures. If the supremal closed-loop behaviour turns
out non-empty, a suitable supervisor can be extracted and the
problem is solved. If, on the other hand, the supremal closed-
loop behaviour turns out empty, no solution exists. The latter
case motives our study of the controllability prefix in the con-
text of ∗-languages: while the “empty-set result” provides no
further insight in how the problem parameters can be modified
in order to obtain a solvable synthesis problem, such guidance
can be extracted from the controllability prefix. This is of in-
terest, e.g., in the context of abstraction based controller de-
sign. In this approach, the plant is substituted by an abstraction
and, if synthesis fails for the abstraction, the question arises
in which regard the abstraction should be refined in order to
obtain a solvable synthesis problem; see e.g. (Yang et al., 2020)
for abstraction based controller synthesis for hybrid systems
with abstraction refinement based on the controllability prefix.
Another option in the situation of failed supervisory controller
synthesis is to relax the specification. This is of interest, e.g., in
the context of fault-tolerant control. The question here is, when
a nominal specification can not be enforced under consideration
of a specific fault, how this specification can be strategically
relaxed in order to obtain a solvable synthesis problem; see
(Moor and Schmidt, 2015, 2017) for a discussion of this sit-
uation which utilises the controllability prefix.



The paper is organised as follows. After introducing relevant
notation, Section 1, we recall the formal definition of the con-
trollability prefix and present an alternative characterisation of
the supremal achievable closed-loop behaviour in Section 2. As
a trivial consequence of this discussion, we obtain a first proce-
dure for the computation of the controllability prefix, however,
with cubic complexity. The language based perspective is com-
plemented by Section 3 in which we discuss the synthesis of
non-blocking state feedback and, taking a game theoretic per-
spective, characterise the set of winning states by a two-nested
fixpoint formula. Finally, in Section 4, we establish a one-to-
one correspondence of winning states and the controllability
prefix. Thus, the fixpoint identified in Section 3 can be used
to effectively compute the controllability prefix with quadratic
complexity. This constitutes our main result.

1. PRELIMINARIES AND NOTATION

We largely follow the same notational conventions as Cassan-
dras and Lafortune (2008); Wonham and Cai (2019).

Let Σ be a finite alphabet, i.e., a finite set of symbols σ ∈ Σ. The
Kleene-closure Σ

∗ is the set of finite strings s = σ1σ2 · · ·σn,
n ∈ �, σi ∈ Σ, and the empty string ε ∈ Σ

∗, ε < Σ. If, for two
strings s, r ∈ Σ

∗, there exists t ∈ Σ
∗ such that s = rt, we say

r is a prefix of s, and write r ≤ s; if in addition r , s, we say
r is a strict prefix of s and write r < s. Given two equivalence
relations ≡1 and ≡2 on Σ

∗, we say that ≡1 is at least as fine as
≡2 if, for all s′ s′′ ∈ Σ

∗, s′ ≡1 s′′ implies that s′ ≡2 s′′.

A ∗-language (or short a language) over Σ is a subset L ⊆ Σ
∗.

The prefix of a language L ⊆ Σ
∗ is defined by pfx L :={r ∈

Σ
∗ | ∃ s ∈ L : r ≤ s}. The prefix operator is also referred to as

the prefix-closure, and, a language L is closed if L = pfx L. A
language K is relatively closed w.r.t. L if K = (pfx K) ∩ L. The
prefix operator distributes over arbitrary unions of languages.
However, for the intersection of two languages L and M, we
have pfx (L ∩ M) ⊆ (pfx L) ∩ (pfx M). If equality holds, L and
M are said to be non-conflicting. Given a language L ⊆ Σ

∗,
the Nerode equivalence ≡L is an equivalence relation on Σ

∗

defined by s′ ≡L s′′ if and only if (∀ t ∈ Σ
∗ )[ s′t ∈ L ↔

s′′t ∈ L ]. Given two languages K ⊆ L ⊆ Σ
∗, and a set of

uncontrollable events Σuc ⊆ Σ, we say K is controllable w.r.t. L,
if (pfx K)Σuc ∩ (pfx L) ⊆ pfx K. Controllability, closedness and
relative closedness are retained under arbitrary union.

An automaton is a tuple G = (Q, Σ, δ, qo, Qm), with state
set Q, initial state qo ∈ Q, marked states Qm ⊆ Q, and the
partial transition function δ : Q × Σ → Q. We write δ(q, s)!
to indicate that δ is defined for the specified arguments q ∈ Q
and s ∈ Σ

∗. The automaton is full if δ(q, σ)! for all q ∈ Q
and σ ∈ Σ, i.e., if δ is a proper function. We identify δ with
its common extension to the domain Q × Σ

∗; i.e., for q ∈ Q,
we have δ(q, ε) = q and, for s ∈ Σ

∗ and σ ∈ Σ, we have
δ(q, sσ)! with δ(q, sσ) = δ(δ(q, s), σ)) if and only if δ(q, s)!
and δ(δ(q, s), σ))!. For set-valued arguments we identify δwith
the associated image operator; e.g., with γ ⊆ Σ we use the
notation δ(q, γ) = { q′ ∈ Q | ∃σ ∈ γ . q′ = δ(q, γ) } and, with
L ⊆ Σ

∗, δ(q, L) = { q′ ∈ Q | ∃ s ∈ L . q′ = δ(q, s) }. A state q ∈ Q
is reachable if q ∈ δ(qo, Σ

∗). A state q ∈ Q is co-reachable if
δ(q, Σ

∗)∩Qm , ∅. If all reachable states in G are co-reachable,
then G is non-blocking. Moreover, G is called reachable (co-
reachable) if all states are reachable (co-reachable), and G is
called trim if it is reachable and co-reachable.

With the automaton G = (Q, Σ, δ, qo, Qm), we denote the
generated language L(G) :={ s ∈ Σ

∗ | δ(qo, s)! } and the marked
language Lm(G) :={ s ∈ Σ

∗ | δ(qo, s) ∈ Qm }. Moreover, we
associate with G the equivalence relation ≡G on Σ

∗, defined for
s′, s′′ ∈ Σ∗ by s′ ≡G s′′ if and only if δ(qo, s′) = δ(qo, s′′).

Let Q denote a finite set and consider a monotone operator
f , i.e., f (P′) ⊆ f (P′′) ⊆ Q for all P′ ⊆ P′′ ⊆ Q. Then
the least fixpoint of f is given by ∪{ f i(∅) | i ∈ �0 } and can
be obtained by the iteration P0 := ∅, Pi+1 := Pi ∪ f (Pi).
In particular, the fixpoint is attained for some finite i ∈ �0.
Likewise, the iteration P0 := Q, Pi+1 := Pi ∩ f (Pi) can be used
to obtain the greatest fixpoint. As a µ-calculus formula, the least
fixpoint of f is denoted µP . f (P), whereas the greatest fixpoint
is denoted νP . f (P). Now consider an operator g that depends
on multiple set-valued parameters, e.g., g(P′, P′′) ⊆ Q for
P′, P′′ ⊆ Q. Assuming that g is monotone in both arguments,
the fixpoints µP′ . g(P′, P′′) and νP′.g(P′, P′′) are monotone in
P′′. In this case, nested µ-calculus formulae are well defined,
e.g. νP′′ . µP′ . g(P′, P′′) evaluates to the greatest fixpoint of
µP′ . g(P′, P′′), interpreted as an expression in terms of P′′.

2. THE CONTROLLABILITY PREFIX

Taking the perspective proposed by Thistle and Wonham
(1994b,a), we adapt the notion of the controllability prefix to
the common setting of supervisory control of ∗-languages; see
also (Moor and Schmidt, 2015, 2017). More specifically, we
consider the following closed-loop configuration of a plant,
represented as a ∗-language, and a supervisor.
Definition 1. Given an alphabet Σ partitioned in controllable
and uncontrollable events, Σ = Σc ∪̇Σuc, the set of control
patterns is denoted Γ :={ γ ⊆ Σ |Σuc ⊆ γ }. For a plant L ⊆ Σ

∗,
a supervisor is a map f : pfx L → Γ. The local closed-loop
behaviour and the accepted closed-loop behaviour are then
defined by

Lf :={ s ∈ pfx L | ∀ t ∈ Σ
∗
, σ ∈ Σ . tσ ∈ pfx s→ σ ∈ f (t) } , (1)

and
Kf := Lf ∩ L , (2)

respectively. The supervisor is non-blocking if Lf and L are non-
conflicting; i.e., if for all s ∈ Lf there exists t ∈ Σ

∗ such that
st ∈ Kf . �

Although we avoid an explicit reference to an automata repre-
sentation and thereby deviate from the original literature (Ra-
madge and Wonham, 1987, 1989), the well known characterisa-
tion of achievable closed-loop behaviours immediately carries
over to our language based setting.
Lemma 2. Consider a plant L ⊆ Σ

∗ and a non-empty closed-
loop candidate K ⊆ Σ

∗, ∅ , K ⊆ L. Then there exists a non-
blocking supervisor f : pfx L → Γ with accepted closed-loop
behaviour Kf such that Kf = K if and only if (a) K is relatively
closed w.r.t. L and (b) K is controllable w.r.t. L.

Proof. See Theorem 6.1 in (Ramadge and Wonham, 1987) �

Given a plant L ⊆ Σ
∗ and an upper-bound specification E, ∅ ,

E ⊆ L, the most basic problem studied in supervisory control
is the synthesis of a non-blocking supervisor f : pfx L →
Γ such that the accepted closed-loop behaviour Kf satisfies
the upper bound E; i.e., we require that Kf ⊆ E. Referring
to Lemma 2, we recall that the two properties (a) relative
closedness and (b) controllability are retained under arbitrary



union; see Proposition 7.1 in (Ramadge and Wonham, 1987).
Hence, the supremum

K↑ := supCF (L, E) :=∪{K ⊆ E |
K is relatively closed and controllable w.r.t. L } (3)

itself is relatively closed and controllable. Consequently, the
control problem has a solution if and only if K↑ is non-empty. In
this case, K↑ is referred to as the closed-loop behaviour under
maximally permissive supervisory control. As a technical com-
ment, note that supCF (L, E) is not affected if we substitute E
by its supremal relatively closed sublanguage E↑ ⊆ E; i.e., we
have K↑ = supCF (L, E↑). An explicit formula to obtain E↑ is
given by Ziller and Cury (1994); see also (Yari and Hashtrudi-
Zad, 2016) for an automata-based algorithm. We may hence-
forth assume E to be relatively closed whenever convenient.

For practical solutions to the supervisory control problem, L
and E are considered regular and, for this case, the literature
provides algorithms for the computation of a finite automaton
realisation of K↑; see (Wonham and Ramadge, 1987). Provided
that K↑ turns out non-empty, a Moore automaton realisation of
a respective supervisor f can be derived from the realisation of
K↑. However, if K↑ turns out empty, nothing can be concluded
except that the synthesis problem at hand exhibits no solution.
In the following, we address this situation by investigating
relaxed variants of the original synthesis problem. More specif-
ically, we impose the hypothesis, that the plant — for whatever
reasons — starts its operation by generating a certain event
sequence s ∈ pfx E, and we then ask whether the problem can
be solved under this additional hypothesis. The set of all strings
s ∈ pfx E that allow for an affirmative answer is referred to as
the controllability prefix of E w.r.t. L. The controllability prefix
was originally introduced by Thistle and Wonham (1994b) in
the context of supervisory control for ω-languages. For the
situation of ∗-languages, we recall the formal definition from
Moor and Schmidt (2015, 2017).
Definition 3. Given a plant L ⊆ Σ

∗, a specification E, ∅ , E ⊆
L, and a string s ∈ Σ

∗, we use the convenient notation
Ls := L ∩ (sΣ∗) , Es := E ∩ (sΣ∗) . (4)

The controllability prefix cfx E ⊆ Σ
∗ of E is then defined as the

set of all strings s ∈ Σ
∗ such that supCF (Ls , Es ) , ∅. �

Note that cfx E ⊆ pfx E and that, in general, cfx E is not closed.
It is immediate from the above definition that ε ∈ cfx E if
and only if supCF (L, E) , ∅; i.e., the control problem under
consideration exhibits a solution if and only if the empty string
is within the controllability prefix. The following alternative
characterisation of the controllability prefix turns our useful for
our subsequent discussion.
Proposition 4. Consider a plant L ⊆ Σ

∗ and a relatively closed
specification E, ∅ , E = (pfx E) ∩ L. Then a string s ∈ Σ

∗ is in
cfx E if and only if there exists a supervisor f : pfx L → Γ for
the plant L such that the associated local closed-loop behaviour
Lf exhibits the following three properties:

(a) s ∈ Lf ,
(b) ∀ t ∈ Σ

∗ . st ∈ Lf → st ∈ pfx E , and
(c) ∀ t ∈ Σ

∗ ∃ r ∈ Σ
∗ . st ∈ Lf → str ∈ Lf ∩ L .

Note that we do require the supervisor f to be non-blocking.

Proof. Given s ∈ Σ
∗, we prove both implications separately.

Assume that there exists a supervisor f : pfx L → Γ with
the above closed-loop properties (a) – (c). We then formally

define a supervisor h for the plant Ls := L ∩ (sΣ∗) by restricting
the domain of f accordingly; i.e., g : pfx Ls → Γ and g(s) =
f (s) for all s ∈ pfx Ls . Denote Ls,g and Ks,g := Ls,g ∩ Ls
the corresponding local and accepted closed-loop behaviours,
respectively. Note that Ls,g = Lf ∩ pfx (sΣ∗), Ks,g = Ls,g ∩
Ls = Lf ∩ L ∩ (sΣ∗) and, by (a), s ∈ Ls,g. To observe that g
is a non-blocking supervisor for Ls , pick an arbitrary u ∈ Ls,g
and distinguish two cases. If u ∈ pfx s, we pick v ∈ Σ

∗ such that
uv = s ∈ Ls,g ⊆ Lf . For this case, we refer to (c) with t = ε to
conclude the existence of r ∈ Σ

∗ such that uvr = str ∈ Lf ∩
L ∩ (sΣ∗) = Ks,g. For our second case, u < pfx s, we infer that
s < u and, hence, can pick t ∈ Σ

∗ such that st = u ∈ Ls,g ⊆ Lf .
We again refer to (c) and conclude the existence of r ∈ Σ

∗ such
that ur = str ∈ Lf ∩ L ∩ (sΣ∗) = Ks,g. In both cases, we have
extended u ∈ Ls,g to a string in Ks,g. Hence g is a non-blocking
supervisor for Ls , and, in particular, s ∈ Ls,g , ∅ implies
Ks,g , ∅. To see that g enforces the specification Es := E ∩
(sΣ∗), pick any u ∈ Ls,g ∩ Ls . In particular, we have s ≤ u
and, hence, can pick t ∈ Σ

∗ such that st = u ∈ Ls,g ⊆ Lf .
We refer to (b) to conclude u = st ∈ pfx E, and obtain u ∈ E
by relative closedness of E w.r.t. L. In summary, g is a non-
blocking supervisor for Ls which enforces the specification Es .
By Lemma 2 we then obtain ∅ , Ks,g ⊆ supCF (Ls , Es ) and,
by Definition 3, s ∈ cfx E.

For the converse implication, assume that s ∈ cfx E. By Def-
inition 3 and Lemma 2 there exists a non-blocking supervisor
g for the plant Ls := L ∩ (sΣ∗) that enforces the specification
Es := E ∩ (sΣ∗). Note that non-blockingness of g implies s ∈
Ls,g, where Ls,g again denotes the associated local closed-loop
behaviour. We extend the domain of h to obtain a supervisor
f : pfx L→ Γ by f (st) := g(st) for all t ∈ Σ

∗ with st ∈ pfx L and
f (u) := Σ ∈ Γ for all u ∈ pfx L with s < pfx u; i.e., f imposes the
dummy control pattern Σ until the event sequence s has been
generated and then switches to mimic g. Denote Lf the local
closed-loop behaviour of L under supervision f and observe
that Ls,g = Lf ∩ (sΣ∗) ⊆ Lf . Then (a) s ∈ Lf is immediate by
s ∈ Ls,g. Regarding (c), pick any t ∈ Σ

∗ such that st ∈ Lf . This
implies st ∈ Ls,g and, by non-blockingness of g, the existence
of r ∈ Σ

∗ such that str ∈ Ls,g ∩ Ls ⊆ Lf ∩ L. Regarding (b), pick
again t ∈ Σ

∗ such that st ∈ Lf . Referring to (c), we extend by
r ∈ Σ

∗ such that str ∈ Lf ∩ L ∩ (sΣ∗) = Ls,g ∩ Ls ⊆ Es ⊆ E.
In particular, we have that s ∈ pfx E. In summary, we have
constructed a supervisor f for L with properties (a) – (c). �

As an immediate consequence of the above proposition, for any
s ∈ cfx E and any supervisor f : pfx L → Γ with the above
properties (a) – (c), the local closed loop Lf satisfies

∀ t ∈ Σ
∗
. st ∈ Lf → st ∈ cfx E ; (5)

i.e., f constraints the future of s to remain within cfx E indefi-
nitely; see also Proposition 3 in (Moor and Schmidt, 2015).

The closed-loop behaviour under maximally permissive super-
vision can be stated in terms of the controllability prefix.
Lemma 5. Consider a plant L ⊆ Σ

∗, and a relatively closed
specification E, ∅ , E = (pfx E) ∩ L. Then

supCF (L, E) = supP(cfx E) ∩ L , (6)
where supP(M) :=∪{K ⊆ M |K = pfx K } denotes the supre-
mal closed sublanguage of a language M ⊆ Σ

∗.

Proof. Denote K↑ := supCF (L, E) and K := supP(cfx E) ∩ L.
For K ⊆ K↑, we first establish that K is controllable w.r.t. L.

Pick any s ∈ pfx K and σ ∈ Σuc such that sσ ∈ pfx L. Observe
that



s ∈ pfx s ⊆ pfx K ⊆ pfx supP(cfx E) =

supP(cfx E) ⊆ cfx E ⊆ pfx E . (7)

In particular, s ∈ cfx E. Denote f : pfx L → Γ a supervisor
such that the local closed loop Lf exhibits properties (a) – (c) as
granted by Proposition 4. Then σ ∈ f (s) and, hence sσ ∈ Lf .
Referring to property (c), we obtain sσt ∈ Lf ∩ L for a suitable
choice of t ∈ Σ

∗, and, by Eq. (5), s pfx (σt) ⊆ cfx E. Together
with pfx s ⊆ cfx E we infer that pfx (sσt) ⊆ cfx E. Hence,
sσt ∈ pfx sσt ⊆ supP(cfx E). Recalling that sσt ∈ L we obtain
sσt ∈ K and, thus, sσ ∈ pfx K. This establishes controllability
of K. Since K is the intersection of a closed language with L,
we also have that K is relatively closed w.r.t. L. Finally, we have
that K ⊆ (pfx E) ∩ L = E and, hence, K is a controllable and
relatively closed subset of E. This implies K ⊆ K↑.

For the converse inclusion, K↑ ⊆ K, we may assume that
K↑ , ∅ and denote f a non-blocking supervisor with accepted
closed-loop behaviour Kf = K↑; see Lemma 2. This supervisor
exhibits properties (a) – (c), as required by Proposition 4, for
any s ∈ pfx K↑ = Lf and, hence, pfx K↑ ⊆ cfx E. Obviously,
pfx K↑ is closed and we obtain K↑ ⊆ pfx K↑ ⊆ supP(cfx E). By
K↑ ⊆ E ⊆ L this implies K↑ ⊆ K. �

The controllability prefix cfx E ⊆ pfx E, as a formal language,
can be realised by an automaton G with suitable marking,
provided that ≡G is at least as fine as ≡L and ≡E .
Proposition 6. Consider a plant L ⊆ Σ

∗, a relatively closed
specification E, ∅ , E = (pfx E) ∩ L, and two strings s, s′ ∈
pfx E such that s≡L s′ and s≡E s′. Then s ∈ cfx E if and only if
s′ ∈ cfx E.

Proof. Assume that s ∈ cfx E and refer to Proposition 4 for a
supervisor f : pfx L → Γ with properties (a) – (c). We then
define an alternative supervisor f ′ : pfx L → Γ by f ′(s′t) :=
f (st) for all t ∈ Σ

∗ with st ∈ pfx L and f ′(u) = Σ ∈ Γ for
u ∈ pfx L with s′ < pfx u. Denote Lf ′ the generated closed-
loop behaviour with the plant L. By construction, we have that
s′ ∈ Lf ′ ; i.e., the candidate f ′ qualifies for property (a) of
Proposition 4 for the candidate string s′. To discuss properties
(b) and (c) consider any t ∈ Σ

∗ such that s′t ∈ Lf ′ . By s≡L s′,
we have that st ∈ pfx L and, by the construction of f ′, we
obtain st ∈ Lf . Referring to property (b) for f and s ∈ cfx E,
this implies st ∈ pfx E and, by s≡E s′, in turn s′t ∈ pfx E.
This constitutes property (b) for the string s′ and the supervisor
f ′. Likewise we refer to property (c) for f and s ∈ cfx E, to
obtain the existence of r ∈ Σ

∗ such that str ∈ Lf ∩ L. By
the construction of f ′, this implies s′tr ∈ Lf ′ and, by s≡L s′,
s′rt ∈ L. In summary, we have constructed a supervisor f ′ that
exhibits properties (a) – (c) for the candidate sequence s′. We
then conclude with Proposition 4 that s′ ∈ cfx E. Note that is
sufficient to establish the “if part” since the “only-if part” then
follows by uniform substitution. �

Given regular parameters L ⊆ Σ
∗ and E ⊆ Σ

∗, ∅ , E =
(pfx E) ∩ L, with finite automata realisations, a realisation of
the controllability prefix can be computed as follows:

(A1) obtain a trim realisation for L and a full realisation of
E; the latter is constructed by introducing an unmarked
dump state as a dummy successor for states and events
with otherwise undefined transition function;

(A2) use the product composition to obtain an automaton G =
(Q, Σ, δ, qo, Qm) with L(G) = pfx L, Lm(G) = E, and
such that ≡G is at least as fine as ≡L and ≡E ;

(A3) iterate over all states q ∈ Q of G and derive realisations of
Ls and Es in order to compute supCF (Ls , Es ) for some
minimum length s ∈ Σ

∗ with δ(qo, s) = q;
(A4) substitute the marking of G by the set Qcfx of all states

q ∈ Q for which supCF (Ls , Es ) , ∅ as identified at step
(A3) and report Gcfx :=(Q, Σ, δ, qo, Qcfx ) as the result.

By Proposition 6, the choice of s ∈ Σ
∗, δ(qo, s) = q, in step

(A3) does not effect the result in step (A4) and we indeed
have cfx E = { s ∈ Σ

∗ | δ(qo, s) ∈ Qcfx } = Lm(Gcfx ). Since
the complexity of computing supCF (Ls , Es ) is O(n2) with
n ∈ � the size of Q, the proposed procedure has an overall
complexity of O(n3). In the subsequent discussion, we will
derive a more elegant procedure to realise the controllability
prefix with quadratic complexity.

3. NON-BLOCKING STATE FEEDBACK

Complementing the language based discussion in the previ-
ous section, we now focus attention on automata realisations.
A generic synthesis problem here is the construction of a
state feedback for a possibly blocking automaton such that the
closed-loop is non-blocking. In this section, we briefly outline
a well known algorithmic solution and derive an alternative
which relates to the controllability prefix. As we shall see in
the subsequent section, this algorithm can be used to solve the
common synthesis problem as discussed in Section 2.
Definition 7. Given an alphabet Σ with the common partition
Σ := Σc ∪̇Σuc, denote Γ the set of control patterns as in Def-
inition 1, and consider a plant realised by a not necessarily
non-blocking automaton G = (Q, Σ, δ, qo, Qm). Then a state
feedback for G is a map h : Q → Γ and the associated
closed-loop system is the automaton Gh :=(Q, Σ, δh, qo, Qm),
with δh(q, σ) := δ(q, σ) for q ∈ Q, σ ∈ h(q) with δ(q, σ)!, and
otherwise undefined. If Gh is non-blocking, we refer to h as a
non-blocking state feedback for G. �

A common approach to synthesise a non-blocking state feed-
back is to iteratively remove critical states and associated tran-
sitions from the automaton G, and to thereby construct a se-
quence of trim automata Gi, i ∈ �0. Here, a state and all
associated transitions are critical (a) if it is not reachable or not
co-reachable or (b) if it misses uncontrollable transitions when
compared with the original automaton G. Since all relevant
sets are finite, the procedure attains a fixpoint G∞ after finitely
many iterations. If the initial state turns out non-critical, a non-
blocking state feedback h for G can be extracted from G∞.

In our development of an alternative procedure we take a game-
theoretic perspective common in the field of reactive synthesis;
see (Finkbeiner, 2016) for an overview. More specifically, we
consider the closed-loop as a two-player game in which a move
of the supervisor (player 0) amounts to the choice of a control
pattern and in which the subsequent move of the plant (player
1) amounts to the choice of an enabled event and the execution
of the respective transition. The supervisor wins the game if
all visited states are co-reachable. A state from which on the
supervisor can strategically organise its future moves such that
regardless the moves of the plant all visited states will be co-
reachable is hence referred to as a player-0-winning state, or
concisely as a winning state. Note that in order to actually attain
a marked state, the plant needs to cooperate with the supervisor
by taking appropriate moves. Technically, the set of winning
states W ⊆ Q is defined as



W :={ q ∈ Q | ∃ h : Q→ Γ

∀ q′ ∈ δh(q, Σ
∗) . δh(q′, Σ

∗) ∩ Qm , ∅ } . (8)
In analogy to the situation with the controllability prefix, it is
an immediate consequence that a non-blocking state feedback
exists if and only if the initial state is a winning state. As it
turns out, the set of all winning states can be conveniently
characterised by a two-nested fixpoint formula in terms of two
strategically defined pre-image operators.

Given a target set X ⊆ Q, the existential pre-image pre∃(X) is
defined by

pre∃(X) :={ q ∈ Q | δ(q, Σ) ∩ X , ∅ } , (9)
i.e., pre∃(X) consists of states with some one-step successor
in X. Clearly, pre∃(X) is monotone in X, i.e., given X′ ⊆
X′′ ⊆ Q we have pre∃(X

′) ⊆ pre∃(X
′′). Moreover, we have

that pre∃(∅) = ∅. Repeatedly applying this operator to a given
target set, one obtains the set of states from which the target
can be reached via some finite event sequence. Technically, we
consider the monotone sequence (Xi)i∈�0 , Xi ⊆ Xi+1 ⊆ Q for all
i ∈ �0, generated by the iteration

X0 := ∅ , Xi+1 := Xi ∪ pre∃(Xi) ∪ T , (10)
with the target T ⊆ Q as a parameter. We then let X∞ :=
∪{ Xi | i ∈ �0 } and observe that X∞ = { q ∈ Q | δ(q, Σ

∗) ∩
T , ∅ }. Note that, for the special case of T = Qm the limit
X∞ amounts to the set of all co-reachable states. Since Q is a
finite set, X∞ is attained after some finite number of iterations;
i.e., there exists k ∈ �0 such that Xi = X∞ for all i ≥ k. It is
well known that X∞ is the smallest fixpoint of the monotone
expression pre∃( · ) ∪ T . Thus, the µ-calculus formula

µX . pre∃(X) ∪ T (11)
evaluates to the limit X∞ and therefore characterises the set of
states from which T is reachable.

The existential pre-image is complemented by the controlled
universal pre-image, defined by

pre∀(Y) :={ q ∈ Q | δ(q, Σuc) ⊆ Y } , (12)
for the domain Y ⊆ Q; i.e., pre∀(Y) consists of those states
that can be controlled such that all one-step successor states
are within Y . Clearly, pre∀(Y) is monotone in Y , i.e., given
Y ′ ⊆ Y ′′ ⊆ Q we have pre∀(Y

′) ⊆ pre∀(Y
′′). Moreover, we

have that pre∀(Q) = Q. If a domain Y ⊆ Q turns out a fixpoint
of the controlled universal pre-image, pre∀(Y) = Y , states q ∈ Y
can be controlled by suitable state-feedback to remain within Y
indefinitely. Given a domain D ⊆ Q, the µ-calculus formula

νY . pre∀(Y) ∩ D (13)
evaluates to the greatest fixpoint Y∞ of the monotone expression
pre∀( · ) ∩ D, and, hence, characterises the largest controlled
invariant subset of D. Since Q is finite, Y∞ can be computed by

Y0 := Q , Yi+1 := Yi ∩ pre∀(Yi) ∩ D , (14)
with Y∞ :=∩{Yi | i ∈ �0 }. In particular, there exists k ∈ �0 such
that Y∞ = Yi for all i ≥ k.

Our conjecture here is that the strategic combination
Z := νY . µX . (pre∃(X) ∪ Qm) ∩ pre∀(Y) (15)

of both fixpoints (11) and (13) evaluates to the set of winning
states; i.e., Z = W. Note that the expression (pre∃( · ) ∪ Qm) ∩
pre∀( · ) is monotone in both arguments, and, hence, the two-
nested fixpoint (15) is well defined. In support of the subsequent
analysis, we refer to one entire run of the inner µ-iteration at a
stage where the outer ν-iteration has attained its fixpoint, i.e.,
we consider the monotone sequence (Xi)i∈�0 generated by

X0 := ∅ , Xi+1 := Xi ∪ ( (pre∃(Xi) ∪ Qm) ∩ pre∀(Z) ) . (16)
In particular, we have that Z = ∪{ Xi | i ∈ �0 }, and we can
introduce the following ranking of states q ∈ Z:

rank(q) := i ∈ �0 s.t. q ∈ Xi, q < Xi−1 . (17)
Note that rank(q) ≥ 1 for all q ∈ Z since X0 = ∅.
Example. We illustrate the fixpoint (15) by the automaton G
with events Σ = {α, β }, Σc = {α }, Σuc = { β }, and with
states and transitions as shown in Figure 1. There, the marked
states are represented by full nodes, and transitions via the
controllable event α are shown with a middle tick. Beginning
with Y0 := Q, we obtain after one inner µ-iteration in X the set of
all co-reachable states which is assigned to Y1. The state at the
top right, however, can not be controlled such that its successors
reside in Y1. Hence, after the second inner iteration in X we
obtain Y2 as indicated. In the subsequent iterations, two more
states are removed from the iterate Y and we finally obtain the
fixpoint Z = Y4. Considering the inner µ-iteration at this stage,
Eq. (16), we obtain the ranking as indicated. A state feedback
that renders Z a co-reachable invariant is derived by disabling
the highlighted (dashed) transitions. However, since qo < Z and
modulo our conjecture Z = W, we do not expect a non-blocking
state feedback for G to exists. �
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Fig. 1. Automaton G with iterates Y0 to Y4 and fixpoint Z

Example. For a slightly more involved example, consider the
automaton G given by Figure 2. The states Ymns := Q \ Z are
removed from the Y-iterate in the outer ν-iteration one by one
from the right to the left. In particular, we have qo ∈ Z and a
non-blocking state feedback for G is obtained by disabling the
highlighted (dashed) transitions. �

Zlft

Ymns
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Fig. 2. Automaton G with fixpoint Z = Zlft ∪ Zrgt

For a formal proof of our conjecture, Z = W, we consider the
following candidate state feedback h : Q→ Γ,

h(q) :=
{

Σuc ∪ {σ ∈ Σ | δ(q, σ) ∈ Z} if q ∈ Z , (18a)
Σ if q < Z , (18b)

for q ∈ Q. With this candidate, we now establish that once a
state in the fixpoint Z is attained, state feedback can be applied
such that all successor states are co-reachable.
Lemma 8. Given an automaton G = (Q, Σ, δ, qo, Qm), apply
the state feedback h : Q → Γ derived by Eqs. (18a/b) from the



fixpoint Z specified in Eq. (15). Denote the closed-loop system
Gh = (Q, Σ, δh, qo, Qm). Then

(a) Z is an invariant set of states in Gh, i.e., δh(Z, Σ
∗) ⊆ Z;

(b) all states in Z are co-reachable in Gh.

In particular, we have that Z ⊆ W with W the winning states
defined by Eq. (8).

Proof. We again refer to Z = ∪{ Xi | i ∈ �0 } for the monotone
sequence (Xi)i∈�0 generated by iteration (16).

Ad (a). Note that Xi ⊆ pre∀(Z) for all i ∈ �0 as an inductive
consequence of Eq. (16). Hence, Z = X∞ :=∪{ Xi | i ∈ �0 } ⊆
pre∀(Z). Now pick an arbitrary q ∈ Z. By the definition of
pre∀( · ), Eq. (12), we have that δ(q, Σuc) ⊆ Z. With σ ∈ h(q)
and referring to Eq. (18a), this implies δ(q, σ) ∈ Z whenever
δ(q, σ)!. Hence, δh(q,Σ) = δ(q, h(q)) ⊆ Z. By induction over
the length of sequences s ∈ Σ

∗ we obtain δh(q,Σ∗) ⊆ Z.
Ad (b). Pick an arbitrary q ∈ Z. For the special case that

rank(q) = 1, we refer to q ∈ X1 = Qm ∩ pre∀(Z) ⊆ Qm
to observe that q is co-reachable. For the general case i :=
rank(q) ≥ 1, we provide an inductive argument. For the base
case i = 1 we have already established co-reachability. Now
assume that for some i ∈ � all states with rank i are co-
reachable in Gh and consider a state q with rank(q) = i +
1 > 1. Observe by monotonicity of (Xi)i∈�0 that q ∈ Xi+1,
q < Xi, implies q < X1 = Qm ∩ pre∀(Z), and, hence,
q ∈ pre∃(Xi) ∩ pre∀(Z). By the definition of pre∃(Xi), Eq. (9),
this implies the existence of σ ∈ Σ such that q′ := δ(q, σ) ∈
Xi ⊆ Z. In particular, we have that rank(q′) ≤ i and, by
Eq. (18a), σ ∈ h(q); i.e., q′ = δh(q, σ). By the induction
hypothesis, q′ is co-reachable in Gh and we can pick s ∈ Σ

∗

such that δh(q′, s) ∈ Qm. Co-reachability of q is then verified by
δh(q, σs) = δh( δh(q, σ), s) = δh(q′, s) ∈ Qm. This concludes
the inductive argument and we have established that all q ∈ Z
are co-reachable in Gh.

Ad Z ⊆ W. Pick q ∈ Z and an arbitrary q′ ∈ δh(q, Σ
∗). We

refer to (a) to obtain q′ ∈ Z and subsequently to (b) to obtain
δh(q′, Σ

∗) ∩ Qm , ∅. Thus, q ∈ W by definition; see Eq. (8) �

The following lemma addresses the converse implication and
establishes that all winning states are within the fixpoint Z.
Lemma 9. Given an automaton G = (Q, Σ, δ, qo, Qm), con-
sider a state q ∈ Q. Assume that there exists a state feed-
back h : Q → Γ such that in the closed-loop system Gh =
(Q, Σ, δh, qo, Qm) all states V := δh(q, Σ

∗) that are reachable
states from q are co-reachable. Then V ⊆ Z with the fixpoint
Z from Eq. (15). In particular, W ⊆ Z for the winning states W
defined by Eq. (8).

Proof. Note that δ(p,Σuc) ⊆ δh(p,Σ∗) ⊆ V for all p ∈ V .
In particular, we have that V ⊆ pre∀(V) as a preliminary
observation. The remainder of the proof is organised in three
separate parts.

First, we refer to the sequence (Xi)i∈�0 generated by the inner
µ-iteration with parameter Y = V , i.e.,

X0 := ∅ , Xi+1 := Xi ∪ ( pre∃(Xi) ∪ Qm ) ∩ pre∀(V) ) , (19)
and we will establish V ⊆ X∞ :=∪{ Xi | i ∈ �0 }. Pick any p ∈ V .
If p ∈ Qm, we refer to V ⊆ pre∀(V), and hence p ∈ X1. If
p < Qm, then there exists a sequence s ∈ Σ

∗, s , ε such that
δh(p, s) ∈ Qm and δh(p, pfx s) ⊆ δh(p, Σ

∗) ⊆ V ⊆ pre∀(V). As
in the first case, we conclude δh(p, s) ∈ X1. For an inductive
argument, we decompose s by s = rσt with r ∈ Σ

∗, σ ∈ Σ,
and t ∈ Σ

∗. Assume that p′′ := δh(p, rσ) ∈ Xi for some

i ∈ � and consider p′ := δh(p, r). By p′′ = δh(p, rσ) ∈ Xi,
we have δ(p′, h(p′)) ∩ Xi , ∅. By δh(p, Σ

∗) ⊆ V we have
that δ(p′, Σuc) ⊆ δ(p′, h(p′)) ⊆ V . Thus, we have established
p′ ∈ pre∃(Xi) ∩ pre∀(V) ⊆ Xi+1. By beginning with t =
ε and subsequently incrementing the length of t we obtain
δh(p, pfx s) ⊆ X∞, and, hence p = δh(p, ε) ∈ X∞. Since p ∈ V
was chosen arbitrarily, we obtain as an intermediate result

V ⊆ µX . ( pre∃(X) ∪ Qm ) ∩ pre∀(V) . (20)
For the second part of the proof we refer to the sequence (Yi)i∈�0

generated by the outer ν-iteration, i.e.,
Y0 := Q , Yi+1 := Yi ∩ Φ(Yi) (21)

with
Φ(Y) := µX . ( pre∃(X) ∪ Qm ) ∩ pre∀(Y) , (22)

for Y ⊆ Q. Clearly, we have V ⊆ Y0. Now assume that V ⊆ Yi
for some i ∈ �0. By the monotonicity of the fixpoint Φ(Y)
w.r.t. the parameter Y and the assumption of V ⊆ Yi we obtain
Φ(V) ⊆ Φ(Yi). With Eq. (20), i.e., V ⊆ Φ(V), this implies
V ⊆ V ∩ Φ(V) ⊆ Yi ∩ Φ(Yi) = Yi+1. Hence, V ⊆ Yi for all
i ∈ �0 and, thus, V ⊆ νY .Φ(Y) = Z.

Regarding W ⊆ Z, pick an arbitrary q ∈ W. By the definition
of W there exists a state feedback h : Q → Γ that satisfies
the conditions imposed by the first part in this Lemma. We
conclude that q ∈ δh(q, Σ

∗) = V ⊆ Z and thus W ⊆ Z. �

As an immediate consequence of Lemmata 8 and 9 we obtain
the following theorem.
Theorem 10. Consider an automaton G = (Q, Σ, δ, qo, Qm)
and a state q ∈ Q. The following two statements are equivalent:

(a) q ∈ Z with Z the fixpoint given in Eq (15);
(b) there exists a state feedback h : Q → Γ with closed-loop

system denoted Gh = (Q, Σ, δ, qo, Qm) such that all states
δh(q, Σ

∗) reachable from q are co-reachable in Gh .

In particular, the fixpoint Eq. (15) evaluates as the set of
winning states specified by Eq. (8), i.e., we have W = Z. �

4. SUPERVISORY CONTROLLER SYNTHESIS

Intuitively, the concept of winning states from the previous sec-
tion is closely related to the controllability prefix: both notions
address a conditional solution to a synthesis problem where the
condition is a hypothesis regarding the initial evolution of the
system; i.e., either by assuming that somehow a winning state is
attained or in that the system for some reason initially generates
an event sequence from the controllability prefix.

Consider a plant L ⊆ Σ
∗ and a relatively closed specification E,

∅ , E = pfx E ∩ L, both regular. Recall from Proposition 6
and the procedure (A1) – (A4) given in Section 2, that we
can strategically construct an automaton G = (Q, Σ, δ, qo, Qm)
such that the controllability prefix can be represented as cfx E =
{ s ∈ Σ

∗ | δ(qo, s) ∈ Qcfx } with some suitable marking Qcfx ⊆ Q.
In this section, we establish that Qcfx matches the set of winning
states W defined by Eq. (8). Thus, the fixpoint iteration Eq. (15)
can be used to effectively compute a representation of the con-
trollability prefix. Note that, in contrast to the procedure (A1) –
(A4), the iteration associated with the two-nested fixpoint is of
complexity O(n2) with n ∈ � the size of Q.

We first show that if a winning state is reached by some string,
then this string must be within the controllability prefix.
Lemma 11. Given a plant L ⊆ Σ

∗, and a relatively closed
specification E, ∅ , E = (pfx E) ∩ L, both regular, consider a



realisation G = (Q, Σ, δ, qo, Qm), with L(G) = L, Lm(G) = E.
Let W ⊆ Q denote the winning states defined by Eq. (8). Then

∀ s ∈ Σ
∗
. δ(qo, s) ∈ W → s ∈ cfx E . (23)

Proof. Given s ∈ Σ
∗ such that q := δ(qo, s) ∈ W, let h denote

a state feedback that qualifies for the existential quantification
in Eq. (8) and Gh = (Q, Σ, δh, qo, Qm) the corresponding
closed-loop system. We then refer to Proposition 4 and con-
sider the candidate supervisor f : pfx L → Γ defined by
f (st) := h(δ(q, t)) for t ∈ Σ

∗ with st ∈ pfx L and f (r) := Σ for
r ∈ pfx L with s < pfx r. Denote Lf the closed-loop behaviour
of L under supervision f . Since δ(qo, s)! implies s ∈ pfx L, the
clause f (r) = Σ for s < pfx r implies s ∈ Lf , and this amounts
to property (a) in Proposition 4. We now refer to the second
clause f (st) = h(δ(q, t)) in the construction of f and, for all
t ∈ Σ

∗, note that st ∈ Lf is equivalent to δh(q, t)!. Pick any
t ∈ Σ

∗ such that st ∈ Lf and denote q′ := δh(q, t). Then the
definition of W, Eq. (8), implies δh(q, tΣ∗) ∩ Qm , ∅, and, in
turn, the existence of r ∈ Σ

∗ such that δh(q, tr) ∈ Qm. This
implies str ∈ Lf ∩ E ⊆ Lf ∩ L, and, hence, properties (b) and
(c) in Proposition 4. Thus, we have established s ∈ cfx E. �

For the converse implication, we demonstrate that any state
reachable via a string from the controllability prefix must be
a winning state.
Lemma 12. Given a plant L ⊆ Σ

∗, and a relatively closed
specification E, ∅ , E = (pfx E) ∩ L, both regular, consider
a realisation G = (Q, Σ, δ, qo, Qm), with L(G) = L, Lm(G) = E
and induced equivalence ≡G at least as fine as ≡L and ≡E . Let
W ⊆ Q denote the winning states as defined by Eq. (8). Then

∀ s ∈ Σ
∗
. s ∈ cfx E → δ(qo, s) ∈ W . (24)

Proof. For a preliminary result, part (A) of the proof, consider
a reachable state q such that

∀ s ∈ Σ
∗
. δ(qo, s) = q → s ∈ cfx E . (25)

Denote the equivalence class of ≡G associated with q by
S q :={ s ∈ Σ

∗ | δ(qo, s) = q } . (26)
Pick any such s ∈ S q and denote Fs the set of all supervisors
with properties (a) – (c) as specified in Proposition 4 in order to
consider the control patterns

γs :=∪{ f (s) | s ∈ Fs } and γq :=∪{ γs | s ∈ S q } . (27)
Then, by Proposition 4 and Eq. (5), sσ ∈ cfx E for all s ∈
S q and all σ ∈ γs with δ(q, σ)!. By Proposition 6 and the
prerequisite that ≡G is at least as fine as ≡L and ≡E , we infer
that s′σ ∈ cfx E for all s, s′ ∈ S q and all σ ∈ γs. This implies
sσ ∈ cfx E for all s ∈ S q and all σ ∈ γq. Also, for any s ∈ S q
and σ ∈ Σ such that δ(qo sσ) ∈ δ(q, γq) we have sσ≡G sσ′ for
some σ′ ∈ γq, Again by Proposition 6 and and the prerequisite
regarding ≡G, we obtain sσ ∈ cfx E for all s ∈ S q and all σ ∈ Σ
with δ(qo sσ) ∈ δ(q, γq). Referring again to Proposition 6, we
finally obtain for all p ∈ δ(q, γq) that

∀ t ∈ Σ
∗
. δ(qo, t) = p → t ∈ cfx E . (28)

We summarise our preliminary result (A) so far as follows:
given a reachable state q such that implication (25) holds, we
can apply the control pattern γq such that effectively the same
implication (28) holds for all successor states p ∈ δ(q, γq).

For the second part (B) of the proof, consider any s ∈ cfx E
and observe, again by Proposition 6, that the state q := δ(qo, s)
qualifies as candidate for our preliminary result (A). We can
then iteratively define a state feedback h : Q → Γ with
h(p) = γp such that δ(qo, r) = p implies r ∈ cfx E for any

state p which is closed-loop reachable from q, i.e., for any
p ∈ V := δh(q, Σ

∗). Now pick an arbitrary p ∈ V and r ∈ Σ
∗ such

that δ(qo, r) = p. Since r ∈ cfx E there exists t ∈ Σ
∗ such that

rt ∈ E and, hence, δ(p, t) ∈ Qm. We choose the shortest such t.
If it is the case that δh(p, t) is defined, we have δh(p, t) = δ(p, t)
and, hence, δh(p, Σ

∗) ∩ Qm , ∅, i.e., p is co-reachable in
the closed-loop configuration. If, on the other hand, δh(p, t) is
not defined, we consider the longest prefix u ∈ pfx t such that
δh(p, u)!. By our choice of u we have p′ := δh(p, u) < Qm and,
hence, ru < E. By p′ ∈ V we have ru ∈ cfx E and we pick
a supervisor f for ru ∈ cfx E via Proposition 4. Referring to
property (c), there must exist σ ∈ f (ru) such that ruσ ∈ pfx L.
By h(p′) = γp′ we obtain σ ∈ f (ru) ⊆ h(p′) and conclude
δh(p′, rσ)!. This contradicts the case prerequisite and, hence,
we always have that δh(p, t) = δ(p, t) ∈ Qm and conclude
δh(p, Σ

∗) ∩ Qm , ∅ for all states p ∈ V = δh(q, Σ
∗). Thus,

h constitutes a state feedback which qualifies for the existential
quantification in the definition of the winning states, Eq. (8),
and thereby demonstrates δ(qo, s) = q ∈ W. Since the choice of
s ∈ cfx E was arbitrary, this concludes the proof. �

The following theorem is an immediate consequence of the
previous two lemmata and summarises our main result.
Theorem 13. Given a plant L ⊆ Σ

∗ and a relatively closed
specification E, ∅ , E = (pfx E) ∩ L, both regular, consider
a realisation G = (Q, Σ, δ, qo, Qm), with L(G) = L, Lm(G) = E
and induced equivalence ≡G at least as fine as ≡L and ≡E . Let
W ⊆ Q denote the winning states as defined in Eq. (8). Then

∀ s ∈ Σ
∗
. s ∈ cfx E ↔ δ(qo, s) ∈ W . (29)

�

This concludes our main argument: the fixpoint Z, Eq. (15),
by Theorem 10 matches the set of winning states, Eq. (8),
which in turn by Theorem 13 characterises the controllabil-
ity prefix; i.e., given an automaton G = (Q, Σ, δ, qo, Qm)
that qualifies for Theorem 13, compute the fixpoint Z and let
GZ :=(Q, Σ, δ, qo, Z) to obtain cfx E = Lm(GZ). As a corol-
lary, we can use the same computational procedure to obtain
a realisation of the supremal controllable and relatively closed
sublanguage.
Corollary 14. Consider L, E ⊆ Σ

∗, ∅ , E = (pfx E) ∩ L,
a realisation G = (Q, Σ, δ, qo, Qm), and the set of winning
states W, all under the same hypothesis as in Theorem 13.
Apply the state feedback h : Q → Γ defined by Eqs. (18a/b)
in the context of Lemma 8, to obtain the closed-loop system
Gh = (Q, Σ, δh, qo, Qm). If qo ∈ W ⊆ Q, then Lm(Gh) =
supCF (L, E) , ∅. Else, qo < W ⊆ Q and supCF (L, E) = ∅.
Proof. For the case qo < W ⊆ Q we apply Theorem 13 to ob-
tain ε < cfx E and, hence, by Definition 3, K↑ := supCF (L, E) =
∅. Thus, we may assume qo ∈ W ⊆ Q from now on.

Pick an arbitrary s ∈ Lm(Gh). Observe that δh(qo, pfx s) ⊆
δh(qo, Σ

∗) ⊆ δh(W, Σ
∗) ⊆ W, where the last inclusion follows

with Lemma 8. We apply Theorem 13 and obtain pfx s ⊆
cfx E. Since pfx s is closed, this implies pfx s ⊆ supP(cfx E).
Together with s ∈ Lm(Gh) ⊆ E ⊆ L we conclude s ∈ K↑ via
Lemma 5. Hence, Lm(Gh) ⊆ K↑.

For the converse inclusion K↑ ⊆ Lm(Gh) pick an arbitrary
s ∈ K↑. Since s ∈ K↑ ⊆ E = Lm(G), it is sufficient to establish
that s ∈ L(Gh). This is trivially the case if s = ε. From now on
consider the case s , ε. Referring to Lemma 5, we have that
s ∈ supP(cfx E). This implies pfx s ⊆ supP(cfx E) ⊆ cfx E.
Applying Theorem 13, we obtain δ(qo, pfx s) ⊆ W. Decompose
s by rσ ∈ pfx s with r ∈ Σ

∗ and σ ∈ Σ, and assume that



r ∈ L(Gh). With q := δ(qo, r) ∈ W we have that q′ := δ(q, σ) =
δ(qo, rσ) ∈ W. Referring to the definition of h, case (18a), this
implies σ ∈ h(q) and, hence, rσ ∈ L(Gh). Since ε ∈ L(Gh), we
obtain r ∈ L(Gh) for all r ∈ pfx s inductively. In particular, we
have that s ∈ L(Gh). �

Example. Consider the alphabet Σ = {α, β }, Σc = {α },
Σuc = { β }, the plant L ⊆ Σ

∗, and the specification E, ∅ ,
E = (pfx E) ∩ L, with a trim and a full realisation given in
Figure 3, respectively. The product automaton G is shown in
Figure 4 and satisfies the prerequisites of Theorem 13. The set
of winning states W = Z obtained via our fixpoint (15) fails
to include the initial state. We conclude by Corollary 14 that
∅ = supCF (L, E), i.e., the synthesis problem has no solution.
Nevertheless, we can inspect Gh obtained by applying the state
feedback h given by Eqs. (18a/b); i.e., by removing transitions
as highlighted (dashed) in Figure 4. This feedback will be func-
tional under the additional hypothesis that either the sequence
s1 = β will not be generated or else that s2 = βββ will not be
generated. If the plant model has been obtained by abstraction,
the latter should be refined regarding those two sequences. In
contrast, any refinement that addresses the behaviour after s3 =
α is not worth the effort since this sequence leads to a winning
state anyway. Note that for the given problem parameters the
standard procedure for the computation of supCF (L, E) will
simply return the empty automaton. �

d.s.
∗

Fig. 3. Realisation of plant L (top) and specification E (bottom)
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Fig. 4. Automaton G with winning states W = Z

CONCLUSION

We have discussed the controllability prefix for the basic
supervisory control problem with an upper-bound language-
inclusion specification. Extending the algebraic properties iden-
tified in earlier work (Moor and Schmidt, 2015, 2017), we have
derived a novel characterisation, Lemma 5, of the supremal
controllable and relatively closed sublanguage and thereby par-
allel the situation of ω-languages as discussed by Thistle and

Wonham (1994b). Turning attention to automata realisations
and non-blocking state feedback, we take a game theoretic
perspective and characterise the set of winning states by a two-
nested fixpoint, Theorem 10. Finally, we identify a one-to-one
correspondence of the winning states for a strategically con-
structed automaton and the controllability prefix, Theorem 13.
This enables the effective computation of the controllability
prefix with quadratic complexity and constitutes our main re-
sult. As a corollary, the procedure can also be used as an al-
ternative for the computation of the supremal controllable and
relatively closed sublanguage commonly studied in supervisory
control.
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